Useful Mathematical Notation (n is a positive integer)

\sqrt{n} is the positive square root of n.
$\boldsymbol{n}!$ is \boldsymbol{n} factorial, means $\boldsymbol{n}(\boldsymbol{n}-\mathbf{1})(\boldsymbol{n}-\mathbf{2}) \ldots \ldots 2.1$ which is the number of permutations of \boldsymbol{n} objects e.g. 3! means the number of three digit numbers that can be made with 1,2 , and 3 .
$!\boldsymbol{n}$ is the number of derangements of n objects e.g. ! 3 means the number of three digit numbers that can be made with 1,2 , and 3 with no 1 in the hundreds position, no 2 in the tens position, and no 3 in the units position.
$\boldsymbol{n}!!$ is not the same as ($\boldsymbol{n}!)$!.
It is defined as $n=\left\{\begin{array}{l}1 \times 3 \times 5 \ldots \ldots . . n \quad n \text { odd } \\ 2 \times 4 \times 6 \ldots \ldots . . n \\ n \text { even }\end{array} \quad \mathbf{n} \geq \mathbf{2}\right.$
Other multifactorials can be defined similarly.

If \boldsymbol{n} is fractional $[\boldsymbol{n}\rfloor$ is the floor of $\boldsymbol{n} .\lfloor\boldsymbol{n}\rfloor$ is the largest integer less than or equal to \boldsymbol{n}.

Similarly, $\lceil\boldsymbol{n}\rceil$ is the ceiling of $\boldsymbol{n} .[\boldsymbol{n}\rfloor$ is the smallest integer larger than or equal to \boldsymbol{n}.

So $[1 \div 4]=0$ and $[1 \div 4]=1$
Interesting formula: $\quad!n=\left\lfloor\frac{n!}{e}+\frac{1}{2}\right\rfloor$

Note:
$\sqrt{2} \approx 1.41 \quad \sqrt{3} \approx 1.73$
! $1=0 \quad$! $2=1 \quad!3=2 \quad!4=9$
4!!=8
$(3!)!=720 \quad(4!)!=6.20448401 \mathrm{E}+23$

